Under DC conditions, capacitors become open circuits.

Note that the hanging branches created by the open circuits at the capacitor locations change the circuit to only one loop.
Method 1:
The current I in this loop is given by

$$
\frac{60}{30+10+20}=\frac{60}{60}=1 \mathrm{~A}
$$

Observe that $v_{1}=v_{c}-v_{B}=$ the voltage across the 30Ω resistor

$$
\begin{aligned}
& =30 \Omega \times 1 \mathrm{~A}=30 \mathrm{~V} \\
v_{2} & =v_{D}-v_{B}=v_{A}-v_{B}=60-I \times 20=60-20=40 \mathrm{~V}
\end{aligned}
$$

L no current through the 50Ω
\Rightarrow Therefore, $v_{A}=v_{D}$.
Method 2: Use voltage divider:

$$
\begin{aligned}
& v_{1}=\frac{30}{30+10+20} \times 60=30 \mathrm{~V} \\
& v_{2}=\frac{10+30}{10+30+20} \times 60=40 \mathrm{~V}
\end{aligned}
$$

Method 3: Use nodal analysis:
At C:

At C:

$$
\begin{aligned}
& \quad \frac{V_{C}}{30}+\frac{V_{C}-V_{A}}{10}=0 \Rightarrow V_{C}+3 V_{C}-3 V_{A}=0 \Rightarrow V_{C}=\frac{3}{4} V_{A} \\
& A+D: \\
& \begin{array}{l}
\frac{V_{D}-V_{A}}{50}+0=0 \Rightarrow V_{D}=V_{A} \\
\frac{V_{A}}{}-V_{C} \\
10
\end{array}+\frac{V_{A}-60}{20}+\frac{V_{A}-V_{D}}{50}=0 \Rightarrow 2 V_{A}-2 V_{C}+V_{A}-60=0 \\
& 3 V_{A}-2 V_{C}=60
\end{aligned}
$$

$$
3 V_{A}-\lambda \frac{3}{4} V_{A}=60 \Rightarrow \frac{3}{2} V_{A}=60 \Rightarrow V_{A}=40 V
$$

$$
v_{1}=v_{c}=30 \mathrm{~V}
$$

$$
v_{2}=v_{D}=V_{A}=40 \mathrm{~V}
$$

A couple of exercises in this HW deal with capacitor combination. To simplify our notation, we will use

$$
\text { series }\left(C_{1}, C_{2}, \ldots, C_{n}\right)
$$

to mean the combined value of $c_{1}, c_{c}, \ldots, c_{n}$ when they are all connected in se vies:

we will use

$$
\text { parallel }\left(c_{1}, c_{2}, \ldots, c_{n}\right)
$$

to mean the combined value of $c_{1}, c_{\imath}, \ldots, c_{n}$ when they are all connected in parallel:

We know that series $\left(c_{1}, \ldots, c_{n}\right)=\left(\frac{1}{c_{1}}+\cdots+\frac{1}{c_{n}}\right)^{-1}$

$$
\operatorname{parallel}\left(c_{1}, \ldots, c_{n}\right)=c_{1}+\cdots+c_{n}
$$

Note that we avoid using " " " to denote parallel combination for capacitor, because it has been used for parallel combination of resistors which corresponds to different formula:

$$
R_{1} / / R_{2}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)^{-1}
$$

Q2 [Alexander and Sadiku, 2009, Q6.19]

At this point, I'm too lazy to draw more pictures. Our simplified combination above is easy enough to be represented in a one-line expression:

$$
\begin{aligned}
& C_{a b}=\operatorname{series}(12, \text { parallel }(12 \text {, series }(120,80))) \\
& \frac{120 \times 80}{120+80}=\frac{\mu \phi \times 8 \phi}{2 \phi \phi}=48 \\
& 48+12=60 \\
& \frac{60 \times 12}{60+12}=\frac{60 \times 12}{36}=10 \\
& =10 \mu \mathrm{~F} \\
& \text { Ldon't forget the unit!! }
\end{aligned}
$$

Q3 [Alexander and Sadiku, 2009, Q6.20]

Q4 [Alexander and Sadiku, 2009, Q6.46]
Monday, August 12, 2013 9:24 PM

Under $D C$ conditions, capacitor \rightarrow open circuit inductor \rightarrow short circuit

No current through this resistor because of the open connection at the capacitor.

By current divider formula, $i_{1}=4 \mathrm{~A}$

$$
i_{2}=2 \mathrm{~A}
$$

$$
\begin{aligned}
& i_{L}=i_{1}=4 \mathrm{~A} \\
& v_{C}=v_{A}=0 \mathrm{~V}
\end{aligned}
$$

no current through the
(There is a short connection from the top to the bottom of the circuit)
through the 5Ω resistor
The energy stored in the capacitor is $\omega_{c}=\frac{1}{2} c v_{c}^{2}=0 \mathrm{~J}$ The energy stored in the inductor is $w_{L}=\frac{1}{L} L i_{L}^{2}$

$$
=\frac{1}{2} \times \frac{1}{2} \times 4^{2}=4 \mathrm{~J}
$$

$$
\begin{array}{ll}
v_{c}=0 \mathrm{~V} & w_{C}=0 \mathrm{~J} \\
i_{L}=4 \mathrm{~A} & w_{L}=4 \mathrm{~J}
\end{array}
$$

Q5 [Alexander and Sadiku, 2009, Q6.49]
Monday, August 12,2013 9:24 PM

$$
\frac{L}{2}+L=\frac{3 L}{2}
$$

$$
\begin{aligned}
L_{\text {eq }} & =\frac{3 L / /}{2} / \frac{L}{2} \\
& =\frac{L}{2}(3 / / 1) \\
& =\frac{L}{2} \frac{3}{4}=\frac{3 L}{8}
\end{aligned}
$$

When $L=10$,

$$
L_{\text {eq }}=\frac{3 \times 10}{8}=3.75 \mathrm{H}
$$

